ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
Alfred L. B. Ho, Alexander Sesonske
Nuclear Technology | Volume 58 | Number 3 | September 1982 | Pages 422-436
Technical Paper | Fuel Cycle | doi.org/10.13182/NT82-A32978
Articles are hosted by Taylor and Francis Online.
Received December 1, 1981 Accepted for Publication March 10, 1982 A fast, yet accurate, fuel cycle analysis method-ology was developed to optimize the various options for in-core nuclear fuel management. The methodology encompasses two major parts, a multicycle point reactor model, PUFLAC, and a reload pattern optimization code called DSPWR. The PUFLAC model provides a convenient and reliable survey ability to explore the various fuel cycle scheme possibilities while DSPWR utilizes a direct search scheme to minimize the core power peaking with consideration given to local power-peaking factor variation. A two-dimensional nodal code used in this direct search scheme was developed for the power distribution calculations and is based on the widely used code, EPRI-NODE-P, with very good agreement obtained. This methodology has been demonstrated by considering an extended burnup three-to-four batch transition cycle analysis using Zion Unit 1 as a reference pressurized water reactor plant with realistic power-peaking constraints. The four-batch scheme can yield an increase in uranium utilization of ∼5% and a decrease in fuel cycle costs of ∼7%. The transition from a three to four-batch scheme can yield an overall increase in uranium utilization of 2.4% and a decrease in fuel cycle costs of ∼4%. The transition fuel-loading patterns optimized by DSPWR satisfy the core power-peaking constraint with a 2 to 3% margin at beginning-of-cycle.