ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Ronald J. Lipinski, John E. Gronager, Michel Schwarz
Nuclear Technology | Volume 58 | Number 3 | September 1982 | Pages 369-378
Technical Paper | Fission Reactor | doi.org/10.13182/NT82-A32972
Articles are hosted by Taylor and Francis Online.
Received November 3, 1981 Accepted for Publication Feburary 24, 1982 The results of a fission-heated sodium-U02 particle bed heat removal experiment (D-4) are presented and the effects of cooling the overlying sodium below saturation are discussed. Single-phase convection began at a Rayleigh number an order of magnitude smaller than for water. Bed disturbances were observed to occur at the onset of boiling, but only after a previous boiling cycle. The disturbances are believed to be due to the flashing of superheated liquid sodium after noncondensable gases had been removed during a previous boiling cycle. The start of bed dryout was observed with two different overlying sodium temperatures (300 and 600°C). The dryout power was 0.77 kW/kg with 300°C overlying sodium (and 29 kPa pressure) and 3.58 kW/kg with 600°C sodium (and 43 kPa). It is believed that cold overlying sodium reduces the large heat-removal capability of shallow beds by causing vapor condensation within the bed and suppressing channel formation. Steady-state temperatures above the boiling temperature were observed at the bed bottom for several power levels above the incipient dryout power, indicating stable dry zones.