ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Dhanpat Rai, Richard G. Strickert, Gary L. McVay
Nuclear Technology | Volume 58 | Number 1 | July 1982 | Pages 69-76
Technical Paper | Radioactive Waste Managment | doi.org/10.13182/NT82-A32959
Articles are hosted by Taylor and Francis Online.
To help predict concentrations of neptunium leached from nuclear waste repositories in geologic environments, the solubility of neptunium in a neptunium-doped borosilicate glass, which simulates a high-level waste glass, was investigated. The concentrations of neptunium in solutions contacting the crushed doped glass were found to be controlled by a neptunium solid phase that is similar to crystal-line(c)´NpO2 in solubility. Thus, the maximum concentration of the neptunium leached from this waste form can be predicted from the solubility of NpO2(c). This conclusion is based on similar neptunium concentrations in solutions contacting neptunium-doped glass, neptunium-doped glass plus NpO2(c), and NpO2(c) alone, under controlled redox potentials and a range of pH values. The quinhydrone used in this study was found to be a very effective redox buffer (the approximate pe + pH = 11.8). The predictions based on the thermodynamic data and the solvent extraction tests showed Np(V) to be the primary oxidation state in solution.