ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
Dhanpat Rai, Richard G. Strickert, Gary L. McVay
Nuclear Technology | Volume 58 | Number 1 | July 1982 | Pages 69-76
Technical Paper | Radioactive Waste Managment | doi.org/10.13182/NT82-A32959
Articles are hosted by Taylor and Francis Online.
To help predict concentrations of neptunium leached from nuclear waste repositories in geologic environments, the solubility of neptunium in a neptunium-doped borosilicate glass, which simulates a high-level waste glass, was investigated. The concentrations of neptunium in solutions contacting the crushed doped glass were found to be controlled by a neptunium solid phase that is similar to crystal-line(c)´NpO2 in solubility. Thus, the maximum concentration of the neptunium leached from this waste form can be predicted from the solubility of NpO2(c). This conclusion is based on similar neptunium concentrations in solutions contacting neptunium-doped glass, neptunium-doped glass plus NpO2(c), and NpO2(c) alone, under controlled redox potentials and a range of pH values. The quinhydrone used in this study was found to be a very effective redox buffer (the approximate pe + pH = 11.8). The predictions based on the thermodynamic data and the solvent extraction tests showed Np(V) to be the primary oxidation state in solution.