ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Dhanpat Rai, Richard G. Strickert, Gary L. McVay
Nuclear Technology | Volume 58 | Number 1 | July 1982 | Pages 69-76
Technical Paper | Radioactive Waste Managment | doi.org/10.13182/NT82-A32959
Articles are hosted by Taylor and Francis Online.
To help predict concentrations of neptunium leached from nuclear waste repositories in geologic environments, the solubility of neptunium in a neptunium-doped borosilicate glass, which simulates a high-level waste glass, was investigated. The concentrations of neptunium in solutions contacting the crushed doped glass were found to be controlled by a neptunium solid phase that is similar to crystal-line(c)´NpO2 in solubility. Thus, the maximum concentration of the neptunium leached from this waste form can be predicted from the solubility of NpO2(c). This conclusion is based on similar neptunium concentrations in solutions contacting neptunium-doped glass, neptunium-doped glass plus NpO2(c), and NpO2(c) alone, under controlled redox potentials and a range of pH values. The quinhydrone used in this study was found to be a very effective redox buffer (the approximate pe + pH = 11.8). The predictions based on the thermodynamic data and the solvent extraction tests showed Np(V) to be the primary oxidation state in solution.