ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
C. S. MacDougall, C. K. Bayne, R. B. Roberson
Nuclear Technology | Volume 58 | Number 1 | July 1982 | Pages 47-52
Technical Paper | Chemicl Processing | doi.org/10.13182/NT82-A32956
Articles are hosted by Taylor and Francis Online.
The design of vessels and off-gas systems for denitrating acidic radioactive process solutions by reacting nitric acid with sugar requires a fairly accurate determination of the rate of the controlling step. Therefore, the reaction of sugar with concentrated nitric acid was closely examined at temperatures of 100 and 110°C and in the presence of low levels of iron [0 to 0.2 M Fe(III)]. The sugar-acid reaction does not exhibit a single mechanism. However, the overall reaction can be approximated by the following expression:.The rate coefficient, K(t), as a function of time [K(t) = K0 + K1t] mathematically delineates the change from the rapid initial reaction at high acid concentrations to the slower digestion reaction at low acid concentrations. At the high acid concentrations (>6 M), the rate coefficient approaches K0. The relationship of the rate constant, K0, with Fe(III) at 100°C is K = 0.60 × [0−4 + 5.60 × 10−4[Fe(III)]. Efficiencies of the sugar destruction by nitric acid ranged from 2.56 to 2.93 mol of acid consumed per mole of carbon added. Product off-gases were examined throughout the reaction. Release of CO was fairly constant throughout the reaction, but amounts of CO2 increased as the nitric acid began to attack the terminal carboxylic acids produced from the consumption of sucrose. Voluminous quantities of NO2 were released at the beginning of the reaction, but larger relative concentrations of NO were observed toward the end.