ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
F. S. Becker, K. L. Kompa
Nuclear Technology | Volume 58 | Number 2 | August 1982 | Pages 329-353
Technical Note | Radioisotopes and Isotope | doi.org/10.13182/NT82-A32941
Articles are hosted by Taylor and Francis Online.
Today, the most actively pursued uranium laser isotope separation methods work with uranium vapor, organic uranium compounds, or uranium hexafluoride. The atomic vapor process has reached the highest development level, but its commercial realization is facing severe obstacles due to the aggressivity of the uranium vapor and the low working pressure. For a commercial separation plant, UF6 would be the most attractive process gas. A promising approach to overcome the problems caused by the small UF6 isotope shift seems to be the use of two infrared wavelengths in the 16- and 9-μm range. Currently, only the CO2 laser pumped CF4 laser and the stimulated rotational Raman scattering of CO2 laser radiation in para-hydrogen are able to provide the energies required for the selective 16-μm excitation, with the Raman method offering better prospects with regard to scalability and frequency tuning. The state-of-the-art of both of these lasers is not advanced enough for a commercial separation plant, where a narrowing of the complex UF6 spectrum by means of a supersonic beam is probably indispensable. Their development level, however, is sufficient to carry through the experiments necessary to clarify the still unanswered questions, i.e., to what extent and with what yield the absorption differences of the two isotopic UF6 species can be transformed into a selective dissociation.