ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
SC Nuclear Summit focuses on V.C. Summer
The second annual South Carolina Nuclear Summit held last week featured utility executives and legislators from the state, as well as leaders from Brookfield Asset Management, which is being considered to restart construction on the two abandoned reactors at the V.C. Summer nuclear power plant in Fairfield County. The summit, at the University of South Carolina’s Colonial Life Arena, attracted more than 350 attendees. The event was hosted by the university’s Molinaroli College of Engineering and Computing.
F. S. Becker, K. L. Kompa
Nuclear Technology | Volume 58 | Number 2 | August 1982 | Pages 329-353
Technical Note | Radioisotopes and Isotope | doi.org/10.13182/NT82-A32941
Articles are hosted by Taylor and Francis Online.
Today, the most actively pursued uranium laser isotope separation methods work with uranium vapor, organic uranium compounds, or uranium hexafluoride. The atomic vapor process has reached the highest development level, but its commercial realization is facing severe obstacles due to the aggressivity of the uranium vapor and the low working pressure. For a commercial separation plant, UF6 would be the most attractive process gas. A promising approach to overcome the problems caused by the small UF6 isotope shift seems to be the use of two infrared wavelengths in the 16- and 9-μm range. Currently, only the CO2 laser pumped CF4 laser and the stimulated rotational Raman scattering of CO2 laser radiation in para-hydrogen are able to provide the energies required for the selective 16-μm excitation, with the Raman method offering better prospects with regard to scalability and frequency tuning. The state-of-the-art of both of these lasers is not advanced enough for a commercial separation plant, where a narrowing of the complex UF6 spectrum by means of a supersonic beam is probably indispensable. Their development level, however, is sufficient to carry through the experiments necessary to clarify the still unanswered questions, i.e., to what extent and with what yield the absorption differences of the two isotopic UF6 species can be transformed into a selective dissociation.