ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
Hiroshi Tochihara, Eiji Ochiai, Tadashi Hasegawa
Nuclear Technology | Volume 58 | Number 2 | August 1982 | Pages 310-317
Technical Paper | Analyse | doi.org/10.13182/NT82-A32939
Articles are hosted by Taylor and Francis Online.
The ex-core detector response in pressurized water reactors (PWRs) depends on not only power level but also core power distribution. Therefore, it is important to precisely calculate the assembly-wise spatial weighting factors for the ex-core detectors. Usually these factors are calculated with the one-dimensional transport code and point kernel calculational method, in which the neutron scattering effect outside of reactor vessel is neglected. But when the scattering effect is estimated to be rather big, we calculate the assembly-wise spatial weighting factors using the two-dimensional transport code, which includes the scattering effect. Consequently, we found that the weighting factors of peripheral assemblies that are remote from the detector but close to reactor vessel are rather big in comparison with the previous results. When we calculate the detector response during one control rod insertion test of three-loop PWR core using these weighting factors, the agreement between calculation and measurement is very good. A simple point kernel calculational method developed instead of the two-dimensional transport calculation that consumes much computer time.