ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
James P. Adams, Victor T. Berta
Nuclear Technology | Volume 58 | Number 2 | August 1982 | Pages 294-309
Technical Paper | Material | doi.org/10.13182/NT82-A32938
Articles are hosted by Taylor and Francis Online.
Self-powered neutron detectors (SPNDs) with cobalt emitters exhibited sensitivity to water density variations in the loss-of-fluid test large break transient simulations. Definite correlations were determined for both depressurization (decreasing water inventory) and core reflood (increasing water inventory) phases of the transients. The SPNDs were positioned in a radial array at the elevation corresponding to the maximum power in the core. The pre-experiment steady-state power density at the detector locations varied from a maximum of 39.3 kW/m (12.0 kW/ft) to a minimum value of 17.4 kW/m (5.3 kW/ft), inclusive of all locations and transient simulations. All of the SPND data exhibited good correlation to water density variations over this range of initial power densities. Water density fluctuations were measured by the SPNDs throughout these transients, and the fluctuations associated with the early corewide rewet and the gravity reflood flow oscillations are addressed in detail. Analytical investigation of the response of these detectors to water density variations long after reactor shutdown indicates that these detectors will remain sufficiently sensitive to have application in reactor vessel liquid level measurement in small break pressurized water reactor transients.