ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Spent fuel transfer project completed at INL
Work crews at Idaho National Laboratory have transferred 40 spent nuclear fuel canisters into long-term storage vaults, the Department of Energy’s Office of Environmental Management has reported.
James P. Adams, Victor T. Berta
Nuclear Technology | Volume 58 | Number 2 | August 1982 | Pages 294-309
Technical Paper | Material | doi.org/10.13182/NT82-A32938
Articles are hosted by Taylor and Francis Online.
Self-powered neutron detectors (SPNDs) with cobalt emitters exhibited sensitivity to water density variations in the loss-of-fluid test large break transient simulations. Definite correlations were determined for both depressurization (decreasing water inventory) and core reflood (increasing water inventory) phases of the transients. The SPNDs were positioned in a radial array at the elevation corresponding to the maximum power in the core. The pre-experiment steady-state power density at the detector locations varied from a maximum of 39.3 kW/m (12.0 kW/ft) to a minimum value of 17.4 kW/m (5.3 kW/ft), inclusive of all locations and transient simulations. All of the SPND data exhibited good correlation to water density variations over this range of initial power densities. Water density fluctuations were measured by the SPNDs throughout these transients, and the fluctuations associated with the early corewide rewet and the gravity reflood flow oscillations are addressed in detail. Analytical investigation of the response of these detectors to water density variations long after reactor shutdown indicates that these detectors will remain sufficiently sensitive to have application in reactor vessel liquid level measurement in small break pressurized water reactor transients.