ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
Earl J. Wheelwright, William J. Bjorklund, Larry M. Browne, Garry H. Bryan, Langdon K. Holton, Everett R. Irish, Dan H. Siemens
Nuclear Technology | Volume 58 | Number 2 | August 1982 | Pages 271-293
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT82-A32937
Articles are hosted by Taylor and Francis Online.
The Nuclear Waste Vitrification Project was conducted to demonstrate the vitrification of high-level liquid waste (HLLW) generated during the reprocessing of spent fuel discharged from an operating light water reactor. Six pressurized water reactor fuel assemblies, containing 2.3 tU, were processed for the generation of HLLW. A conventional Purex-type process was used for the first cycle so that the HLLW generated would be typical of the nitric acid, fission product waste stream from the first extraction cycle of a commercial plant. Uranium and nonradioactive chemicals, normally added to the HLLW by back-cycling of waste from second and third solvent-extraction cycles, were added to the dilute HLLW to produce a waste composition typical of the HLLW from a commercial plant. The waste was then concentrated tenfold to provide feed for solidification by the spray calciner/in-can melting process. During calcination, the liquid waste was pumped at a rate of 10 to 15 ℓ/h to the calciner vessel, which was heated to 750°C. The powdered calcine fell into a stainless steel canister, which was maintained at 1050°C; this canister was attached directly to the bottom of the calciner. Glass-forming chemicals were metered into the canister simultaneously with the calcine. After the materials melted, the canister was cooled to produce vitreous glass. Two 20.3-cm-diam × 244-cm-high canisters containing glass were produced.