ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
David D. Ebert
Nuclear Technology | Volume 58 | Number 2 | August 1982 | Pages 218-232
Technical Paper | Fission Reactor | doi.org/10.13182/NT82-A32933
Articles are hosted by Taylor and Francis Online.
Optimal control techniques can be classified into four categories: heuristic, variational, dynamic programming, and functional analysis. The heuristic method is an intuitive or “common sense” approach. The others rely on developing system models and mathematically defining a “performance index.” Some heuristic methods have been applied to operating reactors to date. Excessive fuel rod failure, unscheduled power cutbacks, inability to follow the load demand, excessive borated waste water generation, and operator inefficiency are some of the operational problems encountered today that could be at least partially ameliorated with more sophisticated optimal control techniques. To improve the effectiveness of optimal control methods, once they are implemented, certain changes in the control system design and operation are recommended. In-core detector analysis times need to be significantly reduced. A fuel failure monitor/predictor should be implemented. Control rod bank insertion programming and soluble boron control system design may be reconsidered. Improved flexibility in core-averaged temperature control is recommended. Finally, to accommodate the fast and accurate simulation of the plant and the incorporation of the optimal control programs, the plant computer system needs to be considerably upgraded.