ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yun Long, Yi Yuan, Mujid S. Kazimi, Ronald G. Ballinger, Edward E. Pilat
Nuclear Technology | Volume 138 | Number 3 | June 2002 | Pages 260-272
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT02-A3293
Articles are hosted by Taylor and Francis Online.
Fission gas release in thoria-urania fuel has been investigated by creating a specially modified FRAPCON-3 code. Because of the reduced buildup of 239Pu and a flatter distribution of 233U, the new model THUPS (Thoria-Urania Power Shape) was developed to calculate the radial power distribution, including the effects of both plutonium and 233U. Additionally, a new porosity model for the rim region was introduced at high burnup. The mechanisms of fission gas release in ThO2-UO2 fuel are expected to be essentially similar to those of UO2 fuel; therefore, the general formulations of the existing fission gas release models in FRAPCON-3 were retained. However, the gas diffusion coefficient was adjusted to a lower level to account for the smaller observed release fraction in the thoria-based fuel. To model the accelerated fission gas release at high burnup properly, a new athermal fission gas release model was introduced. The modified version of FRAPCON-3 was calibrated using the measured fission gas release data from the light water breeder reactor. Using the new model to calculate the gas release in typical pressurized water reactor hot pins gives data that indicate that the ThO2-UO2 fuel will have considerably lower fission gas release above a burnup of 50 MWd/kg HM.