ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
L. E. Bruns
Nuclear Technology | Volume 58 | Number 2 | August 1982 | Pages 154-169
Environmental Transport Mechanism | Radioactive Waste Management | doi.org/10.13182/NT82-A32927
Articles are hosted by Taylor and Francis Online.
The key to control of radionuclides in the environment is the ability to measure at least the lower guideline concentrations set by good environmental control practices. Rockwell Hanford Operations has developed and proposed field instrumentation systems that can give immediate, inexpensive, yet accurate, assays of guideline radionuclide concentrations in the environment. Field instrumentation is divided into two categories: (a) samples brought to a detector in the field (sa-de) and (b) a detector measuring activity in place (in situ). Guideline concentrations are established that field instruments should be able to detect to meet acceptable environmental standards. The guideline values cover environmental surface, subsurface, air, water, and decommissioning and decontamination (D&D). Plutonium is selected as an example: surface—0.060 nCi/g (0.010 nCi/cm2); subsurface—0.03 nCi/g at a 1- to 15-cm depth to 10 nCi/g at a >180-cm depth; airborne—2 × 10−12 μCi/cm3; water—5 × 10−6 μCi/cm3; D&D—surface of 150 nCi/cm2 nonsmearable. To meet the guidelines with in-field equipment, a helicopter survey, surface van, subsurface van, neutron activation, passive activation, and various portable (man-carried) systems have been used or tested at Hanford. The subsurface van was a first of its kind and is capable of obtaining 137Cs at pCi/g levels, plutonium at nCi/g, and many others at environmental level concentrations. Innovations have been added to most of the systems to improve practicability, accuracy, and sensitivity. New systems are being developed; others are planned.