ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
Sridhar Komarneni, Rustum Roy
Nuclear Technology | Volume 56 | Number 3 | March 1982 | Pages 575-579
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT82-A32916
Articles are hosted by Taylor and Francis Online.
The following potential backfill materials have been studied: phillipsite, clinoptilolite, mordenite, montmorillonites, vermiculites, chlorite, kaolinite, labradorite, and shales. Each of these was hydrothermally reacted with Cs2MoO4, a possible cesium phase in spent fuel elements, in the presence of a bittern brine at 200°C for two months under a confining pressure of 300 bars. Analyses of the product solutions indicated that montmorillonites, vermiculites, and zeolites fixed (as determined by resistance to K+ washing) the greatest fractions of the added cesium while other minerals, labradorite, and shales fixed only about 10% of the added cesium. For example, montmorillonite from Arizona and phillipsite from California fixed 47 and 50%, respectively, of the cesium added. X-ray diffraction analysis of the solid products revealed that cesium was fixed in the interlayers of montmorillonite as indicated by the collapse of the c-spacing from 15.5 to 12.1 A. Cesium interaction with clinoptilolite and mordenite zeolites did not result in their alteration or in any new cesium minerals as observed by x-ray diffraction. The cesium aluminosilicate mineral, pollucite, was detected only with phillipsite-cesium interactions in brine unlike in the hydrothermal interaction of these materials with Cs2MoO4 in deionized water where the presence of pollucite was found earlier to be pervasive. Powellite, CaMoO4, was the only new phase found in all these interactions by x-ray diffraction which resulted from the combination of calcium from brine with molybdenum from Cs2MoO4. Montmorillonites among clay minerals and zeolites such as clinoptilolite and mordenite seem to be the best backfill materials in salt based on these studies and based on our earlier studies of mineral stability under repository conditions.