ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
J. Rest
Nuclear Technology | Volume 56 | Number 3 | March 1982 | Pages 553-564
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT82-A32914
Articles are hosted by Taylor and Francis Online.
The interrelationship between fuel fracturing (microcracking), temperature scenario, and fission-gas-bubble response is investigated. The fission-gas-bubble behavior is described using the FASTGRASS computer code. A model, based on the work of DiMelfi and Deitrich describing ductile/brittle fuel behavior, has been incorporated into the FASTGRASS analysis. The predictions of fission-gas release, radial distribution of released gas, radial distribution of microcracking, and fuel temperatures are compared with the results of transient direct-electrical-heating experiments on irradiated light water reactor fuel. Finally, results of analyses for Three Mile Island Unit 2 type accident conditions are presented and implications for microcracking and fission-gas behavior during this accident are discussed.