ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
RP3C Community of Practice’s fifth anniversary
In February, the Community of Practice (CoP) webinar series, hosted by the American Nuclear Society Standards Board’s Risk-informed, Performance-based Principles and Policies Committee (RP3C), celebrated its fifth anniversary. Like so many online events, these CoPs brought people together at a time when interacting with others became challenging in early 2020. Since the kickoff CoP, which highlighted the impact that systems engineering has on the design of NuScale’s small modular reactor, the last Friday of most months has featured a new speaker leading a discussion on the use of risk-informed, performance-based (RIPB) thinking in the nuclear industry. Providing a venue to convene for people within ANS and those who found their way online by another route, CoPs are an opportunity for the community to receive answers to their burning questions about the subject at hand. With 50–100 active online participants most months, the conversation is always lively, and knowledge flows freely.
G. L. Copeland, M. M. Martin
Nuclear Technology | Volume 56 | Number 3 | March 1982 | Pages 547-552
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT82-A32913
Articles are hosted by Taylor and Francis Online.
A common plate-type fuel for research and test reactors is U3O8 dispersed in aluminum and clad with an aluminum alloy. There is an impetus to reduce the 235U enrichment from above 90% to below 20%) for these fuels to lessen the risk of diversion of the uranium for nonpeaceful uses. Thus, the uranium content of the fuel plates has to be increased to maintain the performance of the reactors. Work at Oak Ridge National Laboratory has determined the maximal uranium loading for these fuels that can be fabricated with commercially proven materials and techniques and that can be expected to perform satisfactorily in service. Assuming satisfactory performance in irradiation tests to the required burnup, we anticipate being able to increase the uranium loading in U3O8-Al dispersions to the 3.1 Mg U/m3 level (75 wt% U3O8). This loading level will allow many research reactors to be fueled by uranium of <20% enrichment.