ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
G. L. Copeland, M. M. Martin
Nuclear Technology | Volume 56 | Number 3 | March 1982 | Pages 547-552
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT82-A32913
Articles are hosted by Taylor and Francis Online.
A common plate-type fuel for research and test reactors is U3O8 dispersed in aluminum and clad with an aluminum alloy. There is an impetus to reduce the 235U enrichment from above 90% to below 20%) for these fuels to lessen the risk of diversion of the uranium for nonpeaceful uses. Thus, the uranium content of the fuel plates has to be increased to maintain the performance of the reactors. Work at Oak Ridge National Laboratory has determined the maximal uranium loading for these fuels that can be fabricated with commercially proven materials and techniques and that can be expected to perform satisfactorily in service. Assuming satisfactory performance in irradiation tests to the required burnup, we anticipate being able to increase the uranium loading in U3O8-Al dispersions to the 3.1 Mg U/m3 level (75 wt% U3O8). This loading level will allow many research reactors to be fueled by uranium of <20% enrichment.