ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
A. De Volpi, C. L. Fink, G. E. Marsh, E. A. Rhodes, G. S. Stanford
Nuclear Technology | Volume 56 | Number 1 | January 1982 | Pages 141-188
Technical Paper | Analyses | doi.org/10.13182/NT82-1
Articles are hosted by Taylor and Francis Online.
For fuel-motion surveillance in Transient Reactor Test Facility experiments, the fast-neutron hodoscope has advanced beyond its initial ability to provide time, location, and velocity data: its quantitative mass results are now routinely used in liquid-metal fast breeder reactor accident projections. (Mass normalization is based on initial fuel inventory.) The material and radiation surroundings of the test section affect hodoscope detectors in intrinsic and instrumental ways that necessitate detailed corrections. Depending on the experiment, count rate compensation with as little as 5% total imprecision is usually desired for dead time, power-level changes, nonlinear response, efficiency, and background. In addition, systematic effects ranging up to 20% may occur, from such causes as self-shielding, self-multiplication, self-attenuation, and flux depression. For one- to seven-pin bundles, the hodoscope has achieved 1-ms time resolution, 0.25-mm lateral- and 5-mm axial-motion displacement detection, and 50-mg single-pin, 350-mg seven-pin mass resolution—not all, however, simultaneously, since resolution and statistical precision are inversely related. The experimental and theoretical foundation for that performance is now well established.