ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
P. J. Fehrenbach, P. A. Morel, R. D. Sage
Nuclear Technology | Volume 56 | Number 1 | January 1982 | Pages 112-119
Technical Paper | Material | doi.org/10.13182/NT82-A32886
Articles are hosted by Taylor and Francis Online.
Measurement of fuel element diameters while the fuel is operating at power, in-reactor, has provided evidence of in-reactor fuel densification and relocation. The design and operation of the in-reactor diameter measuring rig used for these measurements are described. Diameter measurements were obtained from two fresh Zircaloy-clad UO2 elements containing fuel of 10.64 and 10.82 Mg/m3 density, respectively, at linear power outputs up to 61 kW/m. Similar measurements were also obtained from a 10.64 Mg/m3 density element after low power irradiation at 26 kW/m to a burnup of 75 MW- h/kg uranium. Results indicate that higher starting fuel density and prior irradiation both reduce the amount and rate of in-reactor fuel densification observed. Diameter measurements following reactor shutdowns, particularly on the higher burnup element, also indicate that fuel relocation can overcome diameter decreases due to fuel densification and restore pellet-clad interaction.