ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Hsiang-Shou Cheng, David J. Diamond
Nuclear Technology | Volume 56 | Number 1 | January 1982 | Pages 40-54
Technical Paper | Fission Reactor | doi.org/10.13182/NT82-A32879
Articles are hosted by Taylor and Francis Online.
The center rod drop accident was calculated for a boiling water reactor using the two-dimensional (R,Z) core dynamics code BNL-TWIGL. Analysts frequently neglect moderator feedback under the assumption that it leads to conservative results. The present study shows that the peak of the power burst and peak fuel enthalpy can indeed be reduced by a factor of 2 or more by including this effect. The magnitude of the effect depends on reactor conditions. Moderator feedback is particularly important when there are voids in the core initially (i.e., at power conditions) or when the core is near saturation condition. When the reactor is initially at zero power and considerably subcooled, moderator feedback will influence the power peak by <10% but will have a much larger effect on the peak fuel enthalpy, which occurs later in time. The moderator feedback is the result of heat conducted from the fuel rod and direct energy deposition. At power conditions, the time constant for heat conduction is small and this is the primary mechanism for changing the steam void content during the accident. At zero power, the initial thermal constant is very large and, hence, any generation of voids at short times is due to direct energy deposition in the moderator. The effect of a different initial power level, flow rate, and inlet sub cooling, as well as the effect of delayed neutron fraction, rod drop speed, and accident rod worth, was calculated. In all cases, with moderator feedback accounted for, the maximum fuel enthalpy during the accident is well below presently established limits. Accident consequences are insensitive to the delayed neutron fraction and rod drop velocity. The parameters of most significance are inlet subcooling and accident rod worth. Most of the analysis used a fixed inlet flow and core pressure. A plant transient calculation was run to see how these parameters varied. The result was fed back into a bounding core calculation, which then showed that the change in pressure and flow increases the peak fuel enthalpy but not to an appreciable extent.