ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J. O. Blomeke, A. G. Croff
Nuclear Technology | Volume 56 | Number 2 | February 1982 | Pages 361-371
Radioactive Waste Management | doi.org/10.13182/NT82-A32864
Articles are hosted by Taylor and Francis Online.
The long-term (>1000 years) hazard of radioactive waste emplaced in a geologic repository could be reduced by separating the most significant long-lived radionuclides and transmitting them to stable products by bombardment with neutrons in power reactors. A cost-risk-benefit analysis of this concept shows that, while it is technically feasible to partition and transmute the principal long-lived constituents, there are no cost-risk-benefit incentives that can be identified. The cost of partitioning and transmuting the actinide elements is estimated to be $9.2 million/ GW(electric). yr [1.28 mill/kWh(electric)]. The shortterm radiological risk is increased by 0.003 health-effect/GW(electric). yr, and the expected long-term benefit (i.e., incremental risk reduction from a repository) is 0.06 health-effect/GW(electric ).yr integrated over 1 million years. The latter is only ∼0.001% of the health effects expected from natural background radiation and is equivalent to $32 400 per person-rem saved. If nonradio logical risks are included, the short-term risk actually exceeds the long-term benefits.