ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P. A. Pizzica, H. H. Hummel
Nuclear Technology | Volume 56 | Number 2 | February 1982 | Pages 313-321
Nuclear Safety | doi.org/10.13182/NT82-A32860
Articles are hosted by Taylor and Francis Online.
Various loss-of-flow cases have been calculated for a commercial-sized liquid-metal fast breeder reactor. Particular attention has been paid to the development of loss-of-flow-driven transient-overpower (LOF-TOP) conditions. In such conditions, it is crucial to consider when an initial cladding breach might occur in LOF-TOP pins and over what length of time the initial cladding breach might extend in fuel pins failing under burst pressure. This study shows that the neutronic energy deposition in transient calculations including LOF-TOP pin failures can increase substantially compared to a calculation excluding such LOF-TOP failures in two ways. First, there will be an increase if there is no extension of an initial cladding failure in LOF-TOP pins or if there is a relatively long delay in the extension. Secondly, when, in applying a fuel melt fraction criterion for pin failure, the same melt fraction is specified for failure extension as for initial failure, which implies a certain delay time for failure extension, there will be an increase in the energy deposition compared to the case without any LOF-TOP failures only when the specified fuel melt fraction becomes very large. However, even in the case with the largest failure melt fraction, there will be no increase in energy deposition when a rapid enough failure extension is assumed. These calculations make a number of very conservative assumptions. The purpose of the study is not to provide a best estimate of accident conditions but to show how quickly an initial cladding breach must extend in such conservative calculations if it is to limit the increase in neutronic energy deposition.