ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Joanna McFarlane, Jungsook C. Wren, Robert J. Lemire
Nuclear Technology | Volume 138 | Number 2 | May 2002 | Pages 162-178
Technical Paper | Reactor Safety | doi.org/10.13182/NT138-162
Articles are hosted by Taylor and Francis Online.
Iodine species released into a reactor containment building following a loss-of-coolant accident is determined by the relative timing and quantity of iodine and other fission products released from the fuel, chemical thermodynamics in the fuel channel, and reaction kinetics in cooler regions of the heat transport system (HTS). Iodine speciation along the transport path from the fuel to cooler regions of the HTS and into containment is evaluated using chemical thermodynamics calculations, leading to a prediction of the volatile iodine mole fraction that theoretically would enter containment. Sensitivities to a decrease in the cesium-to-iodine ratio, a decrease in iodine concentration in the coolant, and an increase in oxygen partial pressure are tested. The role of the presence of other elements, namely, molybdenum, tellurium, uranium, and lithium, are also evaluated. Under most conditions, the mole fraction of iodine entering containment in volatile form is found to be <0.1%. There are circumstances, however, when cesium iodide can be destabilized by a low cesium-to-molybdenum ratio in an oxidizing atmosphere such as steam. To further explore this situation and to validate the code, chemical equilibrium calculations are also compared to earlier Knudsen-cell experimental studies of the interaction of cesium, iodine, molybdenum, and urania. In these experiments, the partial pressures of cesium molybdate and elemental iodine are measured as a function of temperature over the range 1100 to 1500 K. The calculated Cs2MoO4 vapor pressures agree with the experimental results within an order of magnitude at temperatures up to 1200 K; and between 770 and 1150 K, the agreement is within a factor of 2 to 5 depending on the chemical system.