ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Barry E. Scheetz, William B. White, Scott D. Atkinson
Nuclear Technology | Volume 56 | Number 2 | February 1982 | Pages 289-296
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT82-A32856
Articles are hosted by Taylor and Francis Online.
Solubility effects were measured on ceramic and single crystal alumina, titania, SrTiO3 (perovskite structure), and ceramic zirconia at 300 and 400°C for times of 7 and 18 days. Selected fluids were deionized water, a high-bicarbonate, high-sulfate simulated connate water (∼1% total dissolved solids), saturated NaCl brine, and a high-magnesium, high-calcium bittern brine. There is measurable dissolution of Al3+ in the connate water and in the bittern brine only. In both cases this can be related to the low pH conditions expected in these fluids at high temperature and to the increase in aluminum solubility with decreasing pH. The SrTiO3 breaks down to some extent in all fluids in the order bittern brine >NaCl >bicarbonate water >deionized water. Dissolution attack on both titanium and zirconium oxides is very small, indicating that the oxides are stable in the pressure-tempera-ture-fluid composition regime. Breakdown of the perovskite phase appears to be by incongruent dissolution with concurrent precipitation of the titanium oxide.