ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Won Il Ko, Ho Dong Kim, Myung Seung Yang
Nuclear Technology | Volume 138 | Number 2 | May 2002 | Pages 123-139
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT02-A3284
Articles are hosted by Taylor and Francis Online.
This study compares some properties of irradiated Direct Use of Spent Pressurized Water Reactor (PWR) Fuel In Canada Deuterium Uranium reactor (CANDU) (DUPIC ) fuels with properties of other fuel cycles. The properties include the radiotoxicity, decay heat, activity, and actinide content embedded in various spent fuels or high-level wastes, which could be measures of the effectiveness of waste management. From radiotoxicity analysis of fuel cycles, the toxicity of the DUPIC option based on 1 GW(electric)yr is much smaller than those of other fuel cycle options such as the PWR once-through mode, mixed oxide fuel recycling mode, and CANDU once-through mode. The analysis shows that the value is just about half the order of magnitude of other fuel cycles until decayed to a level below the toxicity of initial ore. This means that the DUPIC option could have an indirect benefit on the environmental effects of long-term spent-fuel disposal. From total activity analysis of various fuel cycle options, the activity per metric ton heavy metal of spent fuel is the lowest in natural uranium CANDU fuel, but in the case of activity based on 1 GW(electric)yr, the DUPIC option has the smallest activity. In the meanwhile, from the activity analysis of 99Tc and 237Np, which are important to the long-term transport in geologic media, the DUPIC option was being contained in only about half of those other options. In conclusion, compared to other fuel cycle cases, the irradiated DUPIC fuels would have good properties from the perspective of environmental effects.