ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
J. E. Chafey, D. I. Roberts
Nuclear Technology | Volume 55 | Number 1 | October 1981 | Pages 37-49
Technical Paper | Materials Performance in Nuclear Steam Generator / Material | doi.org/10.13182/NT81-A32830
Articles are hosted by Taylor and Francis Online.
High temperature gas-cooled reactor (HTGR) systems feature a graphite-moderated, uranium-thorium, all-ceramic core and utilize high pressure helium as the primary coolant. The steam generators in these systems are exposed to gas-side temperatures approaching 760°C (1400°F) and produce superheated steam at 538°C (1000°F) and 16.5 MPa (2400 psi). Thus, the design and development of steam generators for these systems require consideration of time-dependent materials behavior, corrosion, fretting, wear, and other related phenomena of concern in all steam generators. The prototype Peach Bottom Unit No. 1 40-MW (electric) HTGR was operated by the Philadelphia Electric Company for a total of 1349 equivalent full power days during a 7-yr period. Upon planned decommissioning of that plant, the forced-recirculation U-tube steam generators and other components were subjected to destructive properties tests and metallurgical examinations. These tests and examinations showed the steam generators to be in very satisfactory condition. The 330-MW(electric) Fort St. Vrain HTGR, owned and operated by Public Service Company of Colorado, and now in the final stages of startup, has achieved 70% power and generated more than 1.5 × 106 MWh of electricity. The steam generators in this reactor are once-through units of helical configuration, and their design and development required considering a number of new materials factors including creep fatigue. Also, because of the once-through design, water chemistry control needed special consideration. Current designs of larger HTGRs also feature steam generators of helical tube once-through design. Materials issues that are important in these designs include detailed consideration of time-dependent behavior of both base metals and welds, as required by current American Society of Mechanical Engineers Code rules, evaluation of bimetallic weld behavior, evaluation of the properties of very large tubesheet forgings, consideration of the gaseous corrosion effects of the primary coolant, and other related factors