ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
B. C. Syrett, D. Cubicciotti, R. L. Jones
Nuclear Technology | Volume 55 | Number 3 | December 1981 | Pages 628-641
Technical Paper | Material | doi.org/10.13182/NT81-A32808
Articles are hosted by Taylor and Francis Online.
Four lots of stress-relieved Zircaloy-2 tubing were prepared from a single heat of the alloy. Tube reduction parameters were controlled so that each lot had a different crystallographic texture. The tubing with the most radial (least tangential) basal pole intensity was shown to have a Kearns texture number in the radial direction of 0.61, whereas the equivalent value for the tubing with the least radial texture was 0.48. Each lot of tubing was given one of three surface treatments: etched, etched and grit blasted, or lightly etched and shot blasted. The iodine stress corrosion cracking (SCC) susceptibility of the unirradiated tubing was determined by measuring the time to failure in a standard tube pres-surization test at ~593 K in which 6 mg of iodine was present for each square centimetre of exposed Zircaloy surface. The results showed that texture has a large effect on SCC susceptibility and that surface condition has a significant but lesser effect. The SCC resistance was lowest in the material with the most tangential basal pole intensity and increased as the texture became more radial. The lightly etched and shot-blasted surface resulted in times to failure that were shorter than the times for the other two surface conditions. However, it seems likely that the influence of surface treatment is quite complex and that SCC susceptibility can change significantly with a seemingly minor change in the surface treatment technique. The effect of texture was interpreted in terms of its influence on strength, on deformation characteristics, and on orientation of SCC susceptible planes with respect to the dominant tensile (hoop) stress. The effect of surface condition was interpreted in terms of its influence on residual stresses, on local texture changes, on local stress concentration, and on chemical activity.