ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
B. A. Loomis, H. R. Thresh, G. L. Fogle, S. B. Gerber
Nuclear Technology | Volume 55 | Number 3 | December 1981 | Pages 617-627
Technical Paper | Material | doi.org/10.13182/NT81-A32807
Articles are hosted by Taylor and Francis Online.
The design of a Zircaloy-2-clad uranium alloy (450 ppm carbon, 250 ppm iron, 350 ppm silicon) target that can function as a pulsed spallation neutron source on interaction of a pulsed 500-MeV proton beam with the uranium nuclei is determined by consideration of irradiation damage, energy deposition, and thermal cycling effects in the target. The designed target is comprised of eight watercooled Zircaloy-2-clad uranium alloy disks, 10 cm in diameter and 2. 7 cm thick operating at a maximum uranium alloy centerline temperature of 330°C. The production of the Zircaloy-2-clad uranium alloy disks involves remelting of the cast uranium alloy by the consumable electrode technique and bonding of the Zircaloy-2 to the uranium alloy by subjecting the composite to an isostatic-helium pressure at 840°C. The lifetime of the disks in the target before cracking of the Zircaloy-2 cladding owing to lowfrequency thermal cycling fatigue is estimated from stress calculations to be ∼500 days. The results of thermal cycling tests on a disk tend to confirm the results of the stress calculations.