ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
David G. Franklin
Nuclear Technology | Volume 55 | Number 3 | December 1981 | Pages 607-616
Technical Paper | Economic | doi.org/10.13182/NT81-A32806
Articles are hosted by Taylor and Francis Online.
Present limitations of nuclear core materials in light water reactors (LWRs) have severe economic consequences. Estimates of the economic impact of (a) fuel-related power maneuvering restrictions, (b) extending the burnup of fuel, (c) extending the life of boiling water reactor (BWR) control rods, and (d) increasing the exposure limits on BWR fuel channels have been made. The primary basis for these estimates is the actual operating experience of typical LWRs, the data being obtained in a poll in which 88% of the U.S. installed capacity responded. The greatest economic improvements can be obtained by reducing capacity factor losses due to fuel-related maneuvering restrictions (currently costing utilities ∼$170 million per year) and from increases in fuel burnup (an increase to 45 GWd/ton results in a savings of $800 million per year by 1995). The economic impact of increases in the life of BWR control rods and of fuel channels is lower but still significant. An increase in BWR control rod life of 1.6 years (to 8 years total) results in a 1990 savings rate of $41 million per year, while an increase in fuel channel life of 4 years (to 8 years total) results in a 1990 savings rate of $25 million per year.