ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
H. Carlsen, D. N. Sah
Nuclear Technology | Volume 55 | Number 3 | December 1981 | Pages 587-593
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT81-A32803
Articles are hosted by Taylor and Francis Online.
The distribution of 239Pu formed in uranium dioxide during irradiation is nonuniform and changes with burnup. This implicates a burnup effect on the fuel temperature distribution. The total 239Pu concentration during irradiation and its radial distribution at end-of-life has been calculated in low-enriched UO2 fuel pellets. The processes considered are 239Pu buildup by capture of thermal and resonance neutrons and 239Pu loss by thermal fissions and neutron capture. The calculated total 239Pu content is verified by chemical analysis, and the calculated 239Pu profile by comparison with results from quantitative alpha autoradiography for two fuel specimens. The effect of a nonuniform radial 239Pu distribution on the fuel temperature profile is evaluated. At a burnup level of 3560 GJ/kg U and a linear heat rating of 50 kW/m, the centerline temperature is calculated to be 245 K lower than that calculated on the assumption that the 239Pu is distributed uniformly.