ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Volker Drüke, Detlef Filges, Rahim Nabbi, Ralf D. Neef, Norbert Paul, Hartwig Schaal
Nuclear Technology | Volume 55 | Number 3 | December 1981 | Pages 549-564
Technical Paper | Fission Reactor | doi.org/10.13182/NT81-A32798
Articles are hosted by Taylor and Francis Online.
Investigation of the initial core poisoning of the pebble bed high temperature reactor has been made by experiments and by checking computations. In following the example of the thorium high-temperature reactor THTR-300, THTR absorber elements poisoned with hafnium-boron were added to the THTR fuel and graphite elements of the KAHTER core. Three different hafnium-boron poisoned core loadings, corresponding to 2.7, 5.3, and 8% reactivity compensation, were used in the experiments. For purposes of comparison, two cores poisoned exclusively with boron were also studied. The poisoning of these cores corresponds to 2.7 and 8% reactivity compensation, respectively. The experiments and checking computations should serve to test the accuracy of the theoretical models and data sets in modeling the reactivity effects of absorber poisoned elements in the THTR. In particular, the applicability of the nuclear data of hafnium and the treatment of resonance calculations should be verified. In addition to determining critical masses and keff, special emphasis was placed in the experiments on the exact determination of all reactivity effects. In some cases, repeated loading of a configuration also provided a measure of the reproducibility of keff. The experiments were checked computationally using the GAMTEREX code package and the program system RSYST. These two computation packages contain different data bases, although the hafnium data are identical, and the computing models differ in certain phases of the calculations. Both code systems compute keff values to within the present accuracy requirements, whereas the program system RSYST gives better agreement with experimental measurements.