ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
James T. Cronin, Bruce C. Slifer
Nuclear Technology | Volume 54 | Number 3 | September 1981 | Pages 393-397
First International Retran Meeting | Heat Transfer and Fluid Flow | doi.org/10.13182/NT81-A32785
Articles are hosted by Taylor and Francis Online.
An analysis of a boiling water reactor/4 plant response to a simultaneous closing of all main steam isolation valves (MSIVs) followed by a failure of the reactor protection system scram function was performed using the RETRAN-01 computer code. The purpose of the analysis was to determine what power level the plant must operate at such that the vessel pressure does not exceed 1500 psig during the postulated transient. No credit was taken for an anticipated transient without scram recirculation pump trip. Analyses were performed both at 100% flow conditions and at reduced core flow conditions. The results of the analyses show that the 1500-psig vessel pressure criterion is met for operating conditions of ≤85% power. Sensitivity studies were performed to identify important input parameters and modeling techniques. Steamline inertial effects, direct moderator heating fraction, feedback reactivity data, fuel rod gap conductance, MSIV closure rates, and upper downcomer modeling were investigated. The peak vessel pressure was found to be most sensitive to the value assumed for gap conductance and to the amount of liquid assumed to be in thermodynamic equilibrium with the vapor phase in the upper downcomer (region outside of the separators between the feedwater sparger and steam dryers). It is recommended that nonequilibrium effects in the upper downcomer region be investigated with models such as the RETRAN nonequilibrium pressurizer model.