ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Wison Luangdilok, Hidetsugu Morota, Michael Epstein
Nuclear Technology | Volume 138 | Number 1 | April 2002 | Pages 44-57
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT02-A3276
Articles are hosted by Taylor and Francis Online.
A model describing the propagation of buoyancy-driven flames and accelerated jet flames in a multicompartment building has been developed for lumped-parameter containment analysis codes. The model mimics the growth of flame fronts as observed from flame visualization experiments at Pisa University and captures the jet ignition phenomena observed in experiments at the Battelle Model Containment. The model establishes a complete scheme of flame propagation consisting of five flame modes, a fireball, a bubble, a prism, a spherical jet, and a planar jet. Through a flame transformation algorithm, flame propagation in a multicompartment system can be described by a birth and rebirth of these flame modes as many times as necessary until burning is complete. The model was implemented into the MAAP4 code. Comparison of the model prediction with Battelle's hydrogen test data (test H5) shows good agreement between the model and the experiment. The model correctly predicts the timing of jet ignition and the magnitude of pressure loads in the downstream compartment. The model was developed for the analysis of hydrogen deflagrations in any compartmentalized building including a reactor containment.