ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—April through June
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from April through May 2024.
Stay tuned for the top stories from the rest of the past year.
J. Buongiorno, N. E. Todreas, M. S. Kazimi
Nuclear Technology | Volume 138 | Number 1 | April 2002 | Pages 30-43
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT02-A3275
Articles are hosted by Taylor and Francis Online.
The choice of lead or lead alloys (Pb-Bi) as the coolant of a fast reactor offers the potential for enhanced safety and reliability due to their benign physical and chemical characteristics. In an effort to assess this class of coolants in advanced nuclear systems of the next generation, an innovative fast reactor concept that eliminates the need for steam generators and main coolant pumps and thus offers capital and operating cost reduction was explored. The working steam is generated by direct-contact vaporization of water by liquid metal in the chimney above the core and is then sent directly to the turbine. The presence of a lighter fluid in the chimney substantially enhances the natural circulation of the Pb-Bi within the reactor pool. A key technical issue of this reactor concept is the consequences of Pb-Bi aerosol generation within the vessel, its transport within the power cycle components and impact on the design and operation of the turbine.Generation, transport, and deposition of Pb-Bi aerosols were modeled. It was found that the utilization of a suitable chevron steam separator design reduces the heavy-liquid metal transported to the steam lines by about three orders of magnitude. Nevertheless, the residual Pb-Bi (~0.003 kg/s) is predicted to be sufficient to cause embrittlement of the turbine blades if conventional materials are used and the plant is to operate for 40 yr. Four solutions to this problem were assessed and found potentially viable from a technical standpoint: blade coating, employment of alternative materials, electrostatic precipitation, and oxidation of the Pb-Bi droplets.