ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
E. Sowa, J. Pavlik
Nuclear Technology | Volume 54 | Number 2 | August 1981 | Pages 234-238
Technical Note | Nuclear Safety | doi.org/10.13182/NT81-A32739
Articles are hosted by Taylor and Francis Online.
The possibility of a core meltdown during a hypothetical core disruptive accident may result in penetration at the bottom of the primary containment. As a consequence, core debris may be ejected from the reactor vessel and come in contact with the concrete or other refractory material located under the vessel. Decay heat will continue to be generated at this location. Small-scale experiments using thermite ignition followed by electrical heating have shown that solution and dilution of the UO2 fuel in the molten refractories take place. Experiments in concrete and zirconia at power levels of 5 to 6 to 24 to 46 W/g UO2 and exposure time varying from 6 to 55 min showed a typical behavior of melting and/or decomposition of the refractory along with formation of a compound melt. Eventual dilution reaches a temperature where solidification of the glass results in immobilization of core material.