ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Princeton-led team develops AI for fusion plasma monitoring
A new AI software tool for monitoring and controlling the plasma inside nuclear fuel systems has been developed by an international collaboration of scientists from Princeton University, Princeton Plasma Physics Laboratory (PPPL), Chung-Ang University, Columbia University, and Seoul National University. The software, which the researchers call Diag2Diag, is described in the paper, “Multimodal super-resolution: discovering hidden physics and its application to fusion plasmas,” published in Nature Communications.
D. S. Rowe, R. N. Oehlberg
Nuclear Technology | Volume 54 | Number 2 | August 1981 | Pages 174-179
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT81-A32733
Articles are hosted by Taylor and Francis Online.
An analytical model for calculating gas flow and pressure inside a nuclear fuel rod is presented. Such a model is required to calculate the pressure loading of cladding during ballooning that could occur for postulated reactor accidents. The mathematical model uses a porous media (permeability) concept to define the resistance to gas flow along the fuel rod. Permeability is expressed in terms of the diametral gap between the fuel pellet and cladding. The mathematical equations are solved numerically by means of a fully implicit finite difference procedure believed to be new to fuel rod gas flow analysis. The solution is direct, fast, and does not require iteration. The analytical model was found to agree quite well with experimental results for transient gas flow in irradiated fuel rods.