ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
A. R. Shepherd, J. N. Anno
Nuclear Technology | Volume 52 | Number 3 | March 1981 | Pages 435-436
Technical Note | Material | doi.org/10.13182/NT81-A32719
Articles are hosted by Taylor and Francis Online.
Radiation-induced outgassing was measured for several metals exposed to 60Co gamma radiation. The metals, in the form of tubes or rods, were placed in a Type 304 stainless-steel vacuum system. It was determined that the array of the pins (either square or hexagonal) did not significantly affect the results. The measurements for Type 304 stainless steel varied from (1.42 ± 1.75) × 10−9 (Pa - ℓ)/(cm2 ·s) per Mrad/h for a surface-to-volume (S/V) ratio of 8.64 cm−1 to (9.58 ± 3.81) ×10−10(pa - ℓ)/(cm2·s) for an S/V ratio of 3.08 cm−1. For Type 316 stainless steel, the determination was (1.18 ± 0.49) × 10−9 (pa - ℓ)/(cm2·s) per Mrad/h, for aluminum the value was (6.24 ± 17.2) × 10−10 and for carbon (2.28 ± 0.59) × 10−9 (pa - ℓ.)/(cm2·s) per Mrad/h. The determinations were made by comparing the rate-of-rise pressure curves with and without gamma radiation, and large errors resulted when the differences were small.