ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
M. A. Hassan, K. Rehme
Nuclear Technology | Volume 52 | Number 3 | March 1981 | Pages 401-414
Technical Paper | Fuel Cycle | doi.org/10.13182/NT81-A32714
Articles are hosted by Taylor and Francis Online.
The influence of spacer grids on the heat transfer in gas-cooled rod bundles was determined experimentally for the first time over a wide range of parameters. The experimental investigations were carried out with a smooth and a rough rod bundle for Reynolds numbers between 600 and 2 × 105. The measured range of Reynolds numbers covered the transition from laminar to turbulent, the transition from hydraulically smooth to rough, and fully rough flows. In gas cooling, artificial roughnesses on the rod surfaces are used to disturb the viscous sublayer, which acts as an insulator because of the low thermal conductivity of gases. For this investigation, a two-dimensional rectangular roughness was used, which had an optimum heat transfer characteristic. The blockage factor ∊ was varied between 25 and 35%. These values are typical of flow blockages due to spacer grids in gas-cooled fast reactors. The measurements were carried out from 10 Dh upstream to 33 Dh downstream of the spacer grid. The measured range covered the zone of heat transfer influenced by the spacer grid. The measurements showed heat transfer to be improved by spacer grids in all cases investigated. On the basis of the measurements, empirical correlations could be established for the influence of the spacer grid on heat transfer in terms of the measured parameters, i.e., Reynolds number, blockage factor, and the type of heat transfer surface. These empirical correlations can be directly used in computer codes for analysis of the thermodynamics and fluid dynamics of gas-cooled rod bundles.