ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leak-tightness test on deck for SRS mega unit
The Savannah River Site in South Carolina will begin a leak-tightness test to qualify the megavolume Saltstone Disposal Unit (SDU) 10 to store up to 33 million gallons of solidified, decontaminated salt solution produced at the site.
S. F. Su, Y. Orechwa, H. Henryson II
Nuclear Technology | Volume 52 | Number 3 | March 1981 | Pages 370-382
Technical Paper | Fission Reactor | doi.org/10.13182/NT81-A32711
Articles are hosted by Taylor and Francis Online.
Two-dimensional multigroup space-time kinetics calculations with thermal-hydraulic feedback were performed for 1000- and 1800-MW(electric) homogeneous and heterogeneous liquid-metal fast breeder reactors. The initiating transient was due to the asymmetric withdrawal of a single control rod. It was found that the point kinetics model can, in many cases, be used for predicting integral reactor characteristics. For accurate predictions of local reactor conditions, space-time kinetics calculations are needed. In the case of both homogeneous and heterogeneous cores, for design basis reactivity insertions with scram, smaller reactivity insertion rates will lead to a greater fuel and cladding temperature rise than large reactivity insertion rates. Heterogeneous cores, because of their inherently greater power shape sensitivity, show a larger temperature rise than the homogeneous cores despite the fact that the transient is of much shorter duration because of an earlier reactor trip due to a lower negative Doppler feedback.