ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—April through June
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from April through May 2024.
Stay tuned for the top stories from the rest of the past year.
David W. Esh, Barry E. Scheetz
Nuclear Technology | Volume 137 | Number 3 | March 2002 | Pages 241-251
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT02-A3271
Articles are hosted by Taylor and Francis Online.
The chemical and mineralogical conditions of the near-field, i.e., that area in the vicinity of the waste materials, may be significantly altered from ambient conditions by thermohydrological processes resulting from the placement of heat-generating radioactive materials in a geologic repository. Models are developed linking the thermohydrological effects simulated with TOUGH2 to a nonreactive aqueous species (chloride). Perturbations in near-field chemistry from the ambient conditions may have potential impacts on engineered barrier system (EBS) performance, waste-form degradation processes, and radionuclide transport. The results of thermohydrological simulations with TOUGH2 utilizing various conceptual models for fracture representation are coupled to simple chemical models (density and osmotic effects are neglected) to demonstrate the complexity and potential magnitude of thermohydrochemical (T-H-C) processes. The concentration of chloride in solution returning to the EBS following dryout, in extreme cases, is predicted to exceed 100 000 mg/l. The dimensionality of the problem and the rate at which the tuffaceous rocks rewet significantly affect the magnitude of the thermohydrological impact on chloride redistribution. A process metric (initial rewetting rate and distribution) that is ignored when evaluating thermohydrological response is very important when a more complex coupling (T-H-C) is considered.