ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
David W. Esh, Barry E. Scheetz
Nuclear Technology | Volume 137 | Number 3 | March 2002 | Pages 241-251
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT02-A3271
Articles are hosted by Taylor and Francis Online.
The chemical and mineralogical conditions of the near-field, i.e., that area in the vicinity of the waste materials, may be significantly altered from ambient conditions by thermohydrological processes resulting from the placement of heat-generating radioactive materials in a geologic repository. Models are developed linking the thermohydrological effects simulated with TOUGH2 to a nonreactive aqueous species (chloride). Perturbations in near-field chemistry from the ambient conditions may have potential impacts on engineered barrier system (EBS) performance, waste-form degradation processes, and radionuclide transport. The results of thermohydrological simulations with TOUGH2 utilizing various conceptual models for fracture representation are coupled to simple chemical models (density and osmotic effects are neglected) to demonstrate the complexity and potential magnitude of thermohydrochemical (T-H-C) processes. The concentration of chloride in solution returning to the EBS following dryout, in extreme cases, is predicted to exceed 100 000 mg/l. The dimensionality of the problem and the rate at which the tuffaceous rocks rewet significantly affect the magnitude of the thermohydrological impact on chloride redistribution. A process metric (initial rewetting rate and distribution) that is ignored when evaluating thermohydrological response is very important when a more complex coupling (T-H-C) is considered.