ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
Richard Simms, Gerald E. Marsh, Alan B. Rothman, George S. Stanford
Nuclear Technology | Volume 52 | Number 3 | March 1981 | Pages 331-341
Technical Paper | Fission Reactor | doi.org/10.13182/NT81-A32707
Articles are hosted by Taylor and Francis Online.
In Transient Reactor Test Facility tests L6 and L7, a loss-of-flow accident sequence was simulated using three fuel elements containing (Pu, U)O2. The test fuel had been previously irradiated at 36 kW/m in a thermal-neutron spectrum in the General Electric Test Reactor to 3 at.% burnup. Fuel dispersal rates at 10 and 20 times nominal power were measured using the 1.2-m fast neutron hodoscope. The measured axial fuel density variations were weighted with typical liquid-metal fast breeder reactor fuel-worth distributions so that the significance of the fuel motion could be assessed. Fuel dispersal rates equivalent to 60¢/s per dollar were observed in test L7. The dispersal rate for test L6 was ∼20¢/s per dollar. The dispersive fuel motion in test L7 could have been augmented by fuel vapor pressures. The experimental fuel-worth changes were also compared with the fuel-worth changes computed by fuel motion models SLUMPY and LEVITATE. Of the two models, LEVITATE provided better agreement with the equivalent fuel-worth changes in test L7.