ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—April through June
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from April through May 2024.
Stay tuned for the top stories from the rest of the past year.
Longcheng Liu, Ivars Neretnieks
Nuclear Technology | Volume 137 | Number 3 | March 2002 | Pages 228-240
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT02-A3270
Articles are hosted by Taylor and Francis Online.
In this study, we develop a mechanism-based model to take into account most of the important processes that may influence the dissolution behavior of spent fuel and subsequently the release behavior of nuclides within a defective canister in a final repository for high-level nuclear waste. The model is, in essence, a redox-controlled reactive transport model that provides a description of the mass transport of multiple species involved in both local equilibrium and kinetically controlled reactions in the system. The complexity of the kinetics of the various redox reactions involved and the requirement of the long-term prediction, however, make numerical implementation of the fully coupled model computationally inefficient. A series of scoping calculations was performed to highlight the local characteristics and behaviors of the system, and to provide a basis for refinement of the reactive transport model. The results indicate that the rapid buildup of hydrogen within the system is mainly attributed to corrosion of the cast-iron insert that primarily occurs under anaerobic conditions, rather than to radiolysis of water. The system that is rapidly in equilibrium with 50 bar hydrogen would then keep pH constant throughout the system. In addition, simulations suggest that reduction of dissolved hexavalent uranium by ferrous iron adsorbed onto the corrosion products and by dissolved H2 are the most important mechanisms to retard the release of uranium out of the canister. More importantly, it is found that the pseudo stationary state approximation may well be applied to the system. This greatly simplifies the numerical implementation of the reactive transport model.