ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
E. R. Gilbert, B. A. Chin
Nuclear Technology | Volume 52 | Number 2 | February 1981 | Pages 273-283
Technical Paper | Material | doi.org/10.13182/NT81-A32670
Articles are hosted by Taylor and Francis Online.
A nationally based program with the U.S. Department of Energy on in-reactor creep studies has produced experimental results that are being used for design and performance analyses of fast breeder reactors. These programs enabled the development of experimental methods that have produced copious in-reactor creep data over a broad range of conditions that include neutron fluences up to 1 X 1023 n/cm2 and temperatures as high as 750°C. These tests have revealed that contrary to guidance provided by post-irradiation creep tests, deformation during neutron irradiation does not impair the stress-to-rupture properties. Temperature- and stress-change experiments have been conducted to simulate the effects of nonsteady-state conditions existing in an operating reactor. The results show that the irradiation creep behavior is rather insensitive to stress and temperature history. In contrast, swelling is highly sensitive to temperature reductions that occur during irradiation. These studies have been conducted primarily on AISI Type 316 stainless steel although a broad base has been initiated on other alloys. The impact of these results is that irradiation creep at high temperature and high neutron fluences is larger than anticipated from early low fluence and low temperature data on AISI Type 316 stainless steel. Consequently, there is a high level of interest in advanced alloys that are more resistant to irradiation creep than is the AISI Type 316 stainless steel. Advanced alloys of the precipitation-strengthened nickel base class as well as low nickel ferritic steels are being investigated as alternates to AISI Type 316 stainless steel for specific core applications. A diverse range in resistance to in-reactor creep has been found, with Inconel 706 providing very high resistance and PE16 providing an intermediate level of resistance.