ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
E. R. Gilbert, B. A. Chin
Nuclear Technology | Volume 52 | Number 2 | February 1981 | Pages 273-283
Technical Paper | Material | doi.org/10.13182/NT81-A32670
Articles are hosted by Taylor and Francis Online.
A nationally based program with the U.S. Department of Energy on in-reactor creep studies has produced experimental results that are being used for design and performance analyses of fast breeder reactors. These programs enabled the development of experimental methods that have produced copious in-reactor creep data over a broad range of conditions that include neutron fluences up to 1 X 1023 n/cm2 and temperatures as high as 750°C. These tests have revealed that contrary to guidance provided by post-irradiation creep tests, deformation during neutron irradiation does not impair the stress-to-rupture properties. Temperature- and stress-change experiments have been conducted to simulate the effects of nonsteady-state conditions existing in an operating reactor. The results show that the irradiation creep behavior is rather insensitive to stress and temperature history. In contrast, swelling is highly sensitive to temperature reductions that occur during irradiation. These studies have been conducted primarily on AISI Type 316 stainless steel although a broad base has been initiated on other alloys. The impact of these results is that irradiation creep at high temperature and high neutron fluences is larger than anticipated from early low fluence and low temperature data on AISI Type 316 stainless steel. Consequently, there is a high level of interest in advanced alloys that are more resistant to irradiation creep than is the AISI Type 316 stainless steel. Advanced alloys of the precipitation-strengthened nickel base class as well as low nickel ferritic steels are being investigated as alternates to AISI Type 316 stainless steel for specific core applications. A diverse range in resistance to in-reactor creep has been found, with Inconel 706 providing very high resistance and PE16 providing an intermediate level of resistance.