ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Ronald E. Bullock
Nuclear Technology | Volume 52 | Number 2 | February 1981 | Pages 246-259
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT81-A32668
Articles are hosted by Taylor and Francis Online.
The irradiation performance of injected thermosetting fuel rods is compared to that of standard pitch-based rods for test conditions exceeding current high-temperature gas-cooled reactor requirements. Thermosetting rods have processing advantages in that they can be carbonized freestanding without loss of shape, but such rods have not performed well under irradiation in the past because of damage to coatings on fuel particles caused by coating-matrix interactions. No such damage was observed when the resin binder was diluted with polystyrene to reduce char yields, even for unusually porous Triso-coated particles used to maximize coating-matrix interactions. Moreover, these diluted thermosetting rods performed as well as standard rods with regard to particle retention, dimensional changes, and behavior of nonporous Biso-coated particle inclusions. However, penetration of resin binder into the porosity of Triso particles during rod injection apparently caused increased shrinkage failures of outer coatings at the highest fluences and temperatures. Additional testing is required to determine if this enhanced failure disappears for less porous particles.