ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
Ronald E. Bullock
Nuclear Technology | Volume 52 | Number 2 | February 1981 | Pages 246-259
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT81-A32668
Articles are hosted by Taylor and Francis Online.
The irradiation performance of injected thermosetting fuel rods is compared to that of standard pitch-based rods for test conditions exceeding current high-temperature gas-cooled reactor requirements. Thermosetting rods have processing advantages in that they can be carbonized freestanding without loss of shape, but such rods have not performed well under irradiation in the past because of damage to coatings on fuel particles caused by coating-matrix interactions. No such damage was observed when the resin binder was diluted with polystyrene to reduce char yields, even for unusually porous Triso-coated particles used to maximize coating-matrix interactions. Moreover, these diluted thermosetting rods performed as well as standard rods with regard to particle retention, dimensional changes, and behavior of nonporous Biso-coated particle inclusions. However, penetration of resin binder into the porosity of Triso particles during rod injection apparently caused increased shrinkage failures of outer coatings at the highest fluences and temperatures. Additional testing is required to determine if this enhanced failure disappears for less porous particles.