ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Samuel H. Levine
Nuclear Technology | Volume 53 | Number 3 | June 1981 | Pages 303-325
Technical Paper | Nuclear Fuel Cycle Education Module / Education | doi.org/10.13182/NT81-A32641
Articles are hosted by Taylor and Francis Online.
This educational module utilizes techniques used to calculate the core reactivity, power distribution, and isotopic inventory for the first and subsequent cores of a nuclear power plant to maintain adequate safety margins and operating lifetime for each core. Some reloading schemes studied minimize energy costs. The module is written more for classroom presentation and self-study by students than for the practicing nuclear engineer; however, the first two sections cover in-core fuel management in a way that should be helpful to a utility manager having the purview of core analysis. The major emphasis is on light water reactors, but in-core fuel management for the high temperature gas-cooled reactor and the liquid-metal fast breeder reactor is included. The module involves detailed information on the systematic application of nucleonic codes, e.g., cross-section generating codes and nodal and diffusion theory multigroup codes, to calculate the depletion and reloading of nuclear power reactors. It is not intended to be a reactor physics text, but detailed derivations of formulas, e.g., the B1 approximation in LEOPARD, FLARE recursion formula, used in the relevant nucleonic codes, are given in greater detail than normally found in a text to eliminate the “black box” use of computer codes.