ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
Samuel H. Levine
Nuclear Technology | Volume 53 | Number 3 | June 1981 | Pages 303-325
Technical Paper | Nuclear Fuel Cycle Education Module / Education | doi.org/10.13182/NT81-A32641
Articles are hosted by Taylor and Francis Online.
This educational module utilizes techniques used to calculate the core reactivity, power distribution, and isotopic inventory for the first and subsequent cores of a nuclear power plant to maintain adequate safety margins and operating lifetime for each core. Some reloading schemes studied minimize energy costs. The module is written more for classroom presentation and self-study by students than for the practicing nuclear engineer; however, the first two sections cover in-core fuel management in a way that should be helpful to a utility manager having the purview of core analysis. The major emphasis is on light water reactors, but in-core fuel management for the high temperature gas-cooled reactor and the liquid-metal fast breeder reactor is included. The module involves detailed information on the systematic application of nucleonic codes, e.g., cross-section generating codes and nodal and diffusion theory multigroup codes, to calculate the depletion and reloading of nuclear power reactors. It is not intended to be a reactor physics text, but detailed derivations of formulas, e.g., the B1 approximation in LEOPARD, FLARE recursion formula, used in the relevant nucleonic codes, are given in greater detail than normally found in a text to eliminate the “black box” use of computer codes.