ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
R. R. Smith
Nuclear Technology | Volume 53 | Number 2 | May 1981 | Pages 147-154
Technical Paper | Realistic Estimates of the Consequences of Nuclear Accident / Nuclear Safety | doi.org/10.13182/NT81-A32619
Articles are hosted by Taylor and Francis Online.
Three series of destructive reactor experiments were examined from the viewpoint of fission product dispersal to the environment and fission product retention in the fuel, coolant, and structural surroundings.The experiments included the following: the Boiling Reactor Experiment (BORAX-I), 1954; Special Power Excursion Reactor Test (SPERT-I), 1962; and Systems for Nuclear Auxiliary Power Transient Reactor test series (SNAPTRAN) 2/10A-3, 1964; and SNAPTRAN-2, 1966. All but SNAPTRAN-2 were carried out in a water medium. Particular emphasis was placed on the release behavior of iodine fission products since it is these that have the highest radiological effectiveness. The results of the studies showed that when fuel is damaged in a water medium essentially all of the radioiodine is retained in the water. Essentially none was volatilized and dispersed to the atmosphere. In the case of fuel damage in an air medium (SNAPTRAN-2), 70% of the radioiodine was released to the atmosphere. Release fractions for the noble gas fission products were also evaluated. These ranged from a low of 3 to 4% in SNAPTRAN-2/10A-3 (water medium) to a high of 75% in SNAPTRAN-2 (air medium). These data, along with those for radioiodine, confirm the effectiveness of water as a medium for limiting the release of fission products to the environment from damaged fuel.