ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
Gary S. Hoovler, M. Neil Baldwin, Ray L. Eng, Fred G. Welfare
Nuclear Technology | Volume 51 | Number 2 | December 1980 | Pages 217-237
Technical Paper | Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Fuel | doi.org/10.13182/NT80-A32604
Articles are hosted by Taylor and Francis Online.
Close-packed storage of light water reactor (LWR) fuel assemblies is needed to expand the capacity of existing underwater storage pools. This increased capacity is required to store the large volume of spent fuel that arises from prolonged on-site storage. To provide benchmark criticality data in support of this effort, an experimental program sponsored by the U.S. Department of Energy was undertaken. Low-enriched UO2 fuel pins in a water-moderated lattice were used to construct 20 critical assemblies that simulated a variety of close-packed LWR fuel storage configurations. The critical assemblies consisted of nine LWR-type fuel assemblies (clusters) grouped in a radially reflected 3×3 array. Both the spacing and material between the fuel clusters were varied to provide numerous critical configurations. All pertinent data for each critical assembly are documented in sufficient detail to validate calculational methods according to the American National Standards Institute standard N16.9-1975. Criticality calculations using the Monte Carlo code KENO IV were performed for comparison with the experimental data. The comparison shows that the calculational model underestimates keff when separation between fuel clusters is >1 pin pitch (1.64 cm), and that the degree of underestimation increases as the spacing widens.