ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—April through June
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from April through May 2024.
Stay tuned for the top stories from the rest of the past year.
Eric P. Loewen, Kevan D. Weaver, Judith K. Hohorst
Nuclear Technology | Volume 137 | Number 2 | February 2002 | Pages 97-110
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT02-A3260
Articles are hosted by Taylor and Francis Online.
Recent investigations into the performance and economics of mixed thoria-urania fuel cycles demonstrate potential advantages at high burnup. Initial neutronic and fuel behavior calculations for several ThO2-UO2 mixtures being considered for use in commercial nuclear power plants are described.The Monte Carlo N-Particle -Origen2 Coupled Utility Program (MOCUP) was used to analyze the reactivity characteristics and isotopic concentrations of unit fuel pins/cells and lattice/assembly models as a function of burnup and reactivity. Neutronic results for a three-batch 6-yr cycle for each of three proposed ThO2-UO2 mixtures with the UO2 enriched to 19.5% 235U are presented. Neutronic results show that fuels fabricated from ThO2-UO2 mixtures can reach an average discharge burnup of up to 70 MWd/kgHM, which will increase the time between refueling and decrease the production of weapons-grade plutonium by a factor of 3 as compared to all-urania fuel.A version of FRAPCON-3, modified to handle pure thoria and ThO2-UO2 mixtures, was used for the fuel performance and behavior calculations. The new version called FRAPCON-3Th includes the updated material property models for thermal conductivity, specific heat capacity, emissivity, thermal expansion, modulus of elasticity, and melting temperature to predict fuel behavior for pure ThO2 or ThO2/UO2 mixed fuel. For a concentration of 75% ThO2/25% UO2, initial fuel performance parameters (peak centerline temperature, gap conductance, thermal expansion, etc.) predicted operating conditions are better than those of current UO2 fuel. A ThO2-ThO2/UO2 thermal conductivity model is still in the development stage. For all fuel calculations, an interim model that interpolates between the Belle and Berman predicted thermal conductivity using a correction factor for radiant heat transport and the MATPRO-predicted thermal conductivity for UO2 was applied.