ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Eric P. Loewen, Kevan D. Weaver, Judith K. Hohorst
Nuclear Technology | Volume 137 | Number 2 | February 2002 | Pages 97-110
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT02-A3260
Articles are hosted by Taylor and Francis Online.
Recent investigations into the performance and economics of mixed thoria-urania fuel cycles demonstrate potential advantages at high burnup. Initial neutronic and fuel behavior calculations for several ThO2-UO2 mixtures being considered for use in commercial nuclear power plants are described.The Monte Carlo N-Particle -Origen2 Coupled Utility Program (MOCUP) was used to analyze the reactivity characteristics and isotopic concentrations of unit fuel pins/cells and lattice/assembly models as a function of burnup and reactivity. Neutronic results for a three-batch 6-yr cycle for each of three proposed ThO2-UO2 mixtures with the UO2 enriched to 19.5% 235U are presented. Neutronic results show that fuels fabricated from ThO2-UO2 mixtures can reach an average discharge burnup of up to 70 MWd/kgHM, which will increase the time between refueling and decrease the production of weapons-grade plutonium by a factor of 3 as compared to all-urania fuel.A version of FRAPCON-3, modified to handle pure thoria and ThO2-UO2 mixtures, was used for the fuel performance and behavior calculations. The new version called FRAPCON-3Th includes the updated material property models for thermal conductivity, specific heat capacity, emissivity, thermal expansion, modulus of elasticity, and melting temperature to predict fuel behavior for pure ThO2 or ThO2/UO2 mixed fuel. For a concentration of 75% ThO2/25% UO2, initial fuel performance parameters (peak centerline temperature, gap conductance, thermal expansion, etc.) predicted operating conditions are better than those of current UO2 fuel. A ThO2-ThO2/UO2 thermal conductivity model is still in the development stage. For all fuel calculations, an interim model that interpolates between the Belle and Berman predicted thermal conductivity using a correction factor for radiant heat transport and the MATPRO-predicted thermal conductivity for UO2 was applied.