ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
James V. Beitz, Jan P. Hessler
Nuclear Technology | Volume 51 | Number 2 | December 1980 | Pages 169-177
Technical Paper | Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Fuel Cycle | doi.org/10.13182/NT80-A32597
Articles are hosted by Taylor and Francis Online.
A detailed and predictive understanding of actinide ion transport by groundwater through geological strata has yet to be achieved. New experimental techniques are needed to detect both the oxidation state and the chemical behavior of these ions at very low concentrations. Laser techniques based on the optical properties of actinide ions are evaluated as probes for identification of the oxidation state of a specific ion. A laser-induced fluorescence study of aquo curium 3+ ion is reported. This technique is extremely sensitive but of limited applicability to actinide ions in solution. Thermal lensing spectroscopy, applicable to all actinide ion oxidation states in solution, is being developed. Preliminary results indicate that actinide ion concentrations between 2 and 100 μmol/m3 can be detected in aqueous solution using thermal lensing. The exact detection limit depends on the actinide ion, its oxidation state, and the spectral region used for the investigation. A means of overcoming the sensitivity limitation imposed by the optical absorbance of water itself is discussed.