ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Marcus N. Myers, Kathy A. Graff, J. Calvin Giddings
Nuclear Technology | Volume 51 | Number 2 | December 1980 | Pages 147-155
Technical Paper | Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Radioactive Waste | doi.org/10.13182/NT80-A32594
Articles are hosted by Taylor and Francis Online.
Field-flow fractionation (FFF) is a versatile analytical separation technique that has proven to be applicable to a wide range of polymers, colloids,and fine oarticles over the effective molecular weight range 103 to 1016, corresponding to diameters of 0.001 to 30 µm. Several subtechniques of FFF have been developed for which there are precise theoretical relationships of retention to particle parameters. Fractionation takes place in a thin flow channel by the interaction of a lateral field (gravitational or centrifugal in the case of sedimentation FFF, cross flow in flow FFF, electrical in electrical FFF, and temperature differential in thermal FFF) with the flow profile. Steric FFF, a limiting form of FFF, is applicable to the largest particles, from 1 up to 30 μm or more in diameter, and can also be used in a preparative mode. Altogether FFF has the potential of separating and characterizing radioactive species and the diverse materials with which they are associated in the environment over a size range where analysis by conventional techniques is difficult or impossible.