The Argonne National Laboratory developed computer program DYNAPCON for the transient analysis of a prestressed concrete reactor vessel (PCRV) for liquid-metal fast breeder reactor (LMFBR) primary containment is applied to a reference design concept representative of large, pool-type LMFBR reactor plants. Estimates of the energy absorption capability of a PCRV primary containment vessel are provided to assist in the establishment of the engineering feasibility of such a design concept. The reference design analyzed utilizes existing concrete structures already in place for biological shielding and component support. The very large energy absorption capability is achieved through the use of fairly large amounts of prestressing steel and mild steel reinforcement within these concrete matrices. Energy sources used range from 2720 to 10 880 MW-s. Even for the largest energy source, the maximum computed strain in the prestressing tendon anywhere in the structure is ∼2.3%, which is still below the strain associated with the minimum ultimate stress levels for most prestressing steels. These results are very encouraging and should provide sufficient incentive to more firmly establish the feasibility of this concept of using a PCRV for primary containment.