ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Algirdas H. Marchertas, Ted B. Belytschko
Nuclear Technology | Volume 51 | Number 3 | December 1980 | Pages 433-442
Technical Paper | Mechanics Applications to Fast Breeder Reactor Safety / Reactor | doi.org/10.13182/NT80-A32579
Articles are hosted by Taylor and Francis Online.
A finite element analytical model involving an explicit time integration procedure is used to treat a prestressed concrete reactor vessel (PCRV) for liquid-metal fast breeder reactor containment. The model is axisymmetric and includes simulations of the tensile cracking of concrete, the reinforcement, and a prestressing capability under transient load. The quasi-static prestressing operation of the PCRV model is performed by an improved dynamic relaxation technique. The concrete material model used in these analyses accounts for tensile cracking in arbitrary directions, crushing of concrete, and the reinforcing steel The variation of the concrete tensile cracking limit with strain rate is taken into account. The prestressing tendons are modeled and relative slip is permitted. Several example solutions using the analytical model were compared with experimental results. The comparisons included simply supported beams and also small scale models of PCR Vs. It was shown that the analytical methods correlate quite well with experimental results, although in the vicinity of the failure load, the response of the models tends to be quite sensitive to input parameters.