ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Wayne R. Zeuch, Chung-Yi Wang
Nuclear Technology | Volume 51 | Number 3 | December 1980 | Pages 421-432
Technical Paper | Mechanics Applications to Fast Breeder Reactor Safety / Reactor | doi.org/10.13182/NT80-A32578
Articles are hosted by Taylor and Francis Online.
The sodium spillage phenomenon in large liquid-metal fast breeder reactors (LMFBRs) during highly energetic hypothetical accidents has been investigated. A parametric study of the spillage process was accomplished with the ICECO code employing a control-volume method. A 1000-MW(electric) reactor, with prescribed leak paths, is modeled and analyzed during the slug impact phase. Leak paths are assumed to exist as annular penetrations in the reactor cover and as a gap at the vessel-head junction. The behavior of sodium spillage was investigated under conditions of different accident energetics, various opening cross-sectional areas, and multiple leak paths, with both stationary and moving reactor covers. Highly energetic accidents were used as the initiating events for the spillage processes described. The intent is to evaluate the range of applicability of the spillage methodology derived. It is not the intent to imply that such energetic accidents have been identified in any LMFBR safety analysis. The behavior of spillage beyond the initial transient period has also been investigated. During the transient period immediately following slug impact, it was found that spillage from annular penetrations in the reactor cover is only weakly sensitive to changes in slug velocity. The same conclusion applies to spillage from a fixed gap at the vessel-head junction. Quantity of sodium spilled during a fixed time was seen to vary proportionally with opening size. Significant sensitivity of spillage to accident energetics was seen only in cases of spillage from the vessel-head junction when the reactor cover was movable. The influence of slug impact on the motion of the reactor cover leads to the conclusion that sodium spillage is most sensitive to accident energetics inasmuch as the area of the leak path is affected. Preliminary results from sodium fire calculations indicate that spray ejection from penetrations in the reactor cover will not cause significant pressurization of the secondary containment from sodium ejected during the initial transient.