ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Investment bill would provide funding options for energy projects
Coons
Moran
The bipartisan Financing Our Futures Act, which expands certain financing tools to all types of energy resources and infrastructure projects, was reintroduced to the U.S. Senate on February 20 by Sens. Jerry Moran (R., Kan.) and Chris Coons (D., Del.).
Via amendment to the Internal Revenue Code, the legislation would allow advanced nuclear energy projects to form as master limited partnerships (MLPs), a tax structure currently available only to traditional energy projects.
An MLP is a business structure that is taxed as a partnership but the ownership interests of which are traded like corporate stock on a market. Until the Internal Revenue Code is amended, MLPs will continue to be available only to investors in energy portfolios for oil, natural gas, coal extraction, and pipeline projects that derive at least 90 percent of their income from these sources. This change would take effect on January 1, 2026.
Wayne R. Zeuch, Chung-Yi Wang
Nuclear Technology | Volume 51 | Number 3 | December 1980 | Pages 421-432
Technical Paper | Mechanics Applications to Fast Breeder Reactor Safety / Reactor | doi.org/10.13182/NT80-A32578
Articles are hosted by Taylor and Francis Online.
The sodium spillage phenomenon in large liquid-metal fast breeder reactors (LMFBRs) during highly energetic hypothetical accidents has been investigated. A parametric study of the spillage process was accomplished with the ICECO code employing a control-volume method. A 1000-MW(electric) reactor, with prescribed leak paths, is modeled and analyzed during the slug impact phase. Leak paths are assumed to exist as annular penetrations in the reactor cover and as a gap at the vessel-head junction. The behavior of sodium spillage was investigated under conditions of different accident energetics, various opening cross-sectional areas, and multiple leak paths, with both stationary and moving reactor covers. Highly energetic accidents were used as the initiating events for the spillage processes described. The intent is to evaluate the range of applicability of the spillage methodology derived. It is not the intent to imply that such energetic accidents have been identified in any LMFBR safety analysis. The behavior of spillage beyond the initial transient period has also been investigated. During the transient period immediately following slug impact, it was found that spillage from annular penetrations in the reactor cover is only weakly sensitive to changes in slug velocity. The same conclusion applies to spillage from a fixed gap at the vessel-head junction. Quantity of sodium spilled during a fixed time was seen to vary proportionally with opening size. Significant sensitivity of spillage to accident energetics was seen only in cases of spillage from the vessel-head junction when the reactor cover was movable. The influence of slug impact on the motion of the reactor cover leads to the conclusion that sodium spillage is most sensitive to accident energetics inasmuch as the area of the leak path is affected. Preliminary results from sodium fire calculations indicate that spray ejection from penetrations in the reactor cover will not cause significant pressurization of the secondary containment from sodium ejected during the initial transient.